Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

P. S. Patil,^a Mohd Mustaqim Rosli,^b Hoong-Kun Fun,^b* Ibrahim Abdul Razak^b and S. M. Dharmaprakash^a

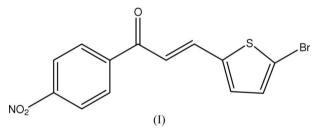
^aDepartment of Studies in Physics, Mangalore University, Mangalagangotri, Mangalore 574 199, India, and ^bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia

Correspondence e-mail: hkfun@usm.my

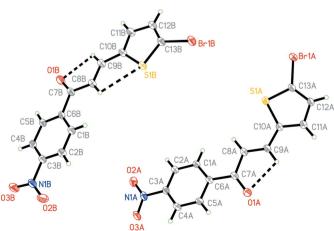
Key indicators

Single-crystal X-ray study T = 100 KMean σ (C–C) = 0.004 Å R factor = 0.041 wR factor = 0.116 Data-to-parameter ratio = 30.7

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.


3-(5-Bromo-2-thienyl)-1-(4-nitrophenyl)prop-2-en-1-one

The title compound, $C_{13}H_8BrNO_3S$, crystallizes with two molecules in the asymmetric unit. All bond lengths and angles in both molecules show normal values. In the crystal structure, the molecules are stabilized by intermolecular $C-H\cdots O$ hydrogen bonds and short $Br\cdots O$ interactions.


Received 11 January 2007 Accepted 14 January 2007

Comment

The title compound, (I), was prepared as part of our ongoing studies on nonlinear optical (NLO) materials (Patil, Teh *et al.*, 2006*a,b,c*; Patil, Rosli *et al.*, 2006; Patil, Dharmaprakash *et al.*, 2006; Shettigar *et al.*, 2006; Chantrapromma, Jindawong *et al.*, 2006; Chantrapromma, Ruanwas *et al.*, 2006). Single untwinned crystals of (I) should exhibit second-order nonlinear optical properties as they crystallize in a non-centrosymmetric space group. However, the crystal studied here proved to be subject to partial inversion twinning.

The asymmetric unit of (I) contains two molecules, A and B (Fig. 1). The bond lengths and angles in both molecules show normal values (Allen *et al.*, 1987). The dihedral angle between the benzene and the thiophene rings is 25.58 (14)° in molecule A and 4.92 (15)° in molecule B. The least-squares plane through the enone unit (O1/C7–C9) makes dihedral angles of

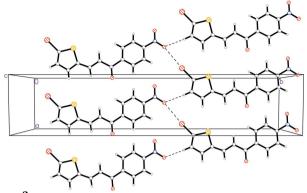


Figure 1

The asymmetric unit of (I), showing 50% probability displacement ellipsoids and the atomic numbering. Hydrogen bonds are shown as dashed lines.

All rights reserved

© 2007 International Union of Crystallography

Figure 2

The crystal packing of (I), viewed down the c axis. Hydrogen bonds and $Br \cdots O$ short contacts are shown as dashed lines.

18.81 (14) and 7.47 (12)° with the planes of the C1–C6 benzene and C10-C13/S1 thiophene rings, respectively, in molecule A, and 4.92 (12) and 1.63 (13)°, respectively, in molecule B. The nitro group attached at C3 is almost coplanar with the C1–C6 benzene ring, with O2–N1–C3–C4 torsion angles of 172.4 (3) and 172.9 (3)°, respectively, for A and B.

Intramolecular C9A-H9AA···O1A, C8B-H8BA···S1B and $C9B-H9BA\cdots O1B$ interactions are observed in the molecular structure of (I). In the crystal structure, the molecules are interconnected by $C12A - H12A \cdots O3A^{iii}$ and $C12B - H12B \cdots O3B^{iv}$ hydrogen bonds (Table 1) and also Br1A···O3A $\left(-\frac{1}{2} + x, \frac{1}{2} + y, z\right)$ [3.140 (2) Å] and Br1B···O3 $B(\frac{1}{2} + x, \frac{1}{2} + y, z)$ [3.168 (3) Å] short contacts, forming layers parallel to the ab plane. These layers are connected by $C5A - H5AA \cdots O1B^{i}$ and $C2B - H2BA \cdots O2A^{ii}$ hydrogen bonds to form a three-dimensional network.

Experimental

5-Bromo-2-thiophenecarbaldehyde (0.01 mol) and 4-nitroacetophenone (0.01 mol) were stirred in 60 ml of methanol at room temperature. A 10% NaOH aqueous solution (5 g) was added and the mixture was stirred for 2 h. The precipitate which was formed was filtered off, washed with water and dried. The crude product obtained was recrystallized twice from acetone. Crystal suitable for X-ray analysis were grown by slow evaporation of an acetone solution at room temperature.

Crystal data

$C_{13}H_8BrNO_3S$ $M_r = 338.17$ Monoclinic, <i>Cc</i> <i>a</i> = 6.3062 (2) Å <i>b</i> = 30.3062 (8) Å <i>c</i> = 13.1854 (4) Å β = 94.549 (1)° <i>V</i> = 2512.02 (13) Å ³	Z = 8 $D_x = 1.788 \text{ Mg m}^{-3}$ Mo K α radiation $\mu = 3.44 \text{ mm}^{-1}$ T = 100.0 (1) K Block, yellow 0.53 × 0.27 × 0.21 mm
Data collection Bruker SMART APEX-II CCD area-detector diffractometer	22566 measured reflections 10546 independent reflections

 ω scans

Absorption correction: multi-scan (SADABS; Bruker, 2005) $T_{\min} = 0.260, T_{\max} = 0.531$ (expected range = 0.238–0.485)

9054 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.046$ $\theta_{\rm max} = 37.5^{\circ}$

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0671P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.042$	where $P = (F_0^2 + 2F_c^2)/3$
$wR(F^2) = 0.116$	$(\Delta/\sigma)_{\rm max} < 0.001$
S = 1.01	$\Delta \rho_{\rm max} = 1.09 \ {\rm e} \ {\rm \AA}^{-3}$
10546 reflections	$\Delta \rho_{\rm min} = -1.04 \text{ e} \text{ Å}^{-3}$
344 parameters	Absolute structure: Flack (1983),
H-atom parameters constrained	3980 Friedel pairs
	Flack parameter: 0.352 (6)

Table 1			
Hydrogen-bond	geometry	(Å.	°).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C5A - H5AA \cdots O1B^{i}$	0.93	2.59	3.284 (4)	132
$C9A - H9AA \cdots O1A$	0.93	2.44	2.787 (3)	102
$C2B - H2BA \cdots O2A^{ii}$	0.93	2.58	3.313 (4)	136
$C8B - H8BA \cdots S1B$	0.93	2.88	3.220 (3)	103
$C9B - H9BA \cdots O1B$	0.93	2.45	2.791 (4)	102
$C12A - H12A \cdots O3A^{iii}$	0.93	2.44	3.362 (4)	171
$C12B - H12B \cdots O3B^{iv}$	0.93	2.47	3.392 (4)	174

Symmetry codes: (i) x + 2, y, z; (ii) x, -y, $z + \frac{1}{2}$; (iii) $x + \frac{1}{2}$, $y + \frac{1}{2}$, z; (iv) $x - \frac{1}{2}$, $y + \frac{1}{2}$, z.

All H atoms were refined using a riding model, with C-H = 0.93 Å and $U_{iso}(H) = 1.2U_{eq}(C)$. In the final difference map, the highest peak is located 0.74 Å from atom Br1B and the deepest hole is located 1.10 Å from Br1A.

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 1998); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 2003).

The authors thank the Malaysian Government and Universiti Sains Malaysia for the Scientific Advancement Grant Allocation (SAGA) grant No. 304/PFIZIK/653003/ A118. PSP thanks DRDO, the Government of India, for a Junior Research Fellowship (JRF).

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.
- Bruker (2005). APEX2 (Version 1.27), SAINT (Version 7.12A) and SADABS (Version 2004/1). Bruker AXS Inc., Madison, Wisconsin, USA.
- Chantrapromma, S., Jindawong, B., Fun, H.-K., Patil, P.S. & Karalai, C. (2006). Acta Cryst. E62, o1802-o1804.
- Chantrapromma, S., Ruanwas, P., Fun, H.-K. & Patil, P. S. (2006). Acta Cryst. E62, 05494-05496.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
- Patil, P. S., Dharmaprakash, S. M., Fun, H.-K. & Karthikeyan, M. S. (2006). J. Cryst. Growth, 297, 111-116.
- Patil, P. S., Rosli, M. M., Fun, H.-K., Razak, I. A., Puranik, V. G. & Dharmaprakash, S. M. (2006). Acta Cryst. E62, 04798-04799.
- Patil, P. S., Teh, J. B.-J., Fun, H.-K., Razak, I. A. & Dharmaprakash, S. M. (2006a). Acta Cryst. E62, 0896-0898.
- Patil, P. S., Teh, J. B.-J., Fun, H.-K., Razak, I. A. & Dharmaprakash, S. M. (2006b). Acta Cryst. E62, o1710-o1712.
- Patil, P. S., Teh, J. B.-J., Fun, H.-K., Razak, I. A. & Dharmaprakash, S. M. (2006c). Acta Cryst. E62, o3096-o3098.
- Sheldrick, G. M. (1998). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.

Shettigar, V., Patil, P. S., Naveen, S., Dharmaprakash, S. M., Sridhar, M. A. & Shashidra Prasad, J. (2006). J. Cryst. Growth, 295, 44-49.

Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.